

↑ 110 W 39th St, Baltimore, MD, USA +1 (443) 254-2113 ■ lwang178@jhu.edu □ astrochriswang.com ↑ https://github.com/Chrrrrris https://www.linkedin.com/in/chriswang-a85524223/

EDUCATION

Aug. 2021 - May 2025

Johns Hopkins University, Baltimore, MD, USA

BSc in Computer Science, Physics, and Applied Mathematics & Statistics

GPA: 3.95/4.00 Minor: Mathematics Grad courses taken: 9

RESEARCH PROJECTS

Jan. 2022 – Present

Schlaufman Exoplanet Group

Advisor: Prof. Kevin C. Schlauman, Dr. Matthew S. Clement

- Unresolved Binary Star Rejection: Assembled photometry for every star confirmed as an open cluster member by Gaia. Designed algorithms that fit Hertzsprung–Russell diagrams and reject unresolved binary stars.
- Stellar Elemental Abundance and Planet Formation: Simulated the mass evolution of stellar surface convective zone using Modules for Experiments in Stellar Astrophysics (MESA). Showed there is no relationship between stellar photospheric elemental abundance pattern and planet formation.
- Planet Formation with N-body Simulation:
 - investigate the relative importance between pebble accretion and planetesimal accretion to the outcomes of planet formation directly with numerical simulations and exoplanet demographics with Mercury 6.
 - investigate the stability of mean-motion-resonance chains for TOI-700 system with Mercury6.
 - investigate the planet formation outcomes for MK-dwarf systems with varying disk mass, which is then combined with a volatile growth model to track planets' atmospheric and mantle composition of H₂O, N₂, and CO₂.

May 2022 - Present

Sing Exoplanet Group

Advisors: Prof. David K. Sing, Zafar Rustamkulov

- JWST data reduction pipeline development: Optimized JWST NIRSpec data reduction pipeline using nested sampling to extract transit light curves; reduced the light curve extraction runtime by an order of magnitude. Integrated the capability to reduce JWST NIRISS/SOSS data to the team's JWST data reduction pipeline originally designed for NIRSpec.
- Transmission Spectroscopy: Extracted transmission spectra for WASP-96b, HAT-P-14b, and K2-18b. Combined transmission spectrum from SOSS with that derived from various space-based and ground-based observatories and retrieved atmospheric properties.

Awards & fellowships

IDIES Summer Student Fellowship
\$6,000, JHU, competitive research fellowship awarded to 5 undergraduates conducting
data-intensive research.
$\Sigma\Pi\Sigma$ Physics Honor Society
Awarded for outstanding academic achievement in physics and astronomy.
Summer Provost's Undergraduate Research Award
\$6,000, JHU, competitive research fellowship (36 out of 400+ applicants).
Dean's ASPIRE Grants
\$2,474, JHU, competitive research fellowship; awarded to 10 undergraduates per year.
Hophacks 2^{nd} place
Hopkins's premier 36-hour hackathon. 2/40. \$512 prize.
Quest2Learn Most Innovative Platform to Help with Learning
Awarded for creating an application that helps with learning.
Bloomberg Distinguished Professor Fellowship
\$6,000, JHU, competitive research fellowship; awarded to 2 physics undergraduates.
Dean's List
Excellence in academics. Awarded every semester $(6/6)$.

PUBLICATIONS

First-authored/equivalent Publications

- 4. Liu, R.*, Wang, L. C.*, Rustamkulov, Z., & Sing, D. K., "Unveiling the atmosphere of the super-Jupiter HAT-P-14b with JWST NIRISS and NIRSpec" Submitted to AAS Journals (*: Co-first author).
- 3. Wang, L. C. & Schlaufman, K. C., "Elemental Abundance Trends with Condensation Temperature are Unrelated to Planet Formation" Submitted to AAS Journals.
- 2. Gou, X.*, Pan, X.*, Wang, L. C.*, "General Relativity Testing in Exoplanetary Systems" *IOP Conf. Ser.: Earth Environ. Sci.* (2021). (*: Equal contributions).
- 1. Zheng, Y., Wang, X., Wang, L. C.* et al., "Test of Bell's and Mermin's inequalities on Quantum Computer" 2020 2nd International Conference on Information Technology and Computer Application (2020) (*: Corresponding Author).

Coauthoed Publications

- 2. Wang, G., incl. Wang, L. C., "A Revised Density Estimate for the Largest Planet, HAT-P-67 b" Submitted to AAS Journals.
- 1. Chen, H., incl. Wang, L. C., "A Palette of Water Inventories Assembled across Nascent TRAPPIST-1 Analog Planets" Submitted to Nature Astronomy.

Talks & Presentations

Oct. 2024	Planet Formation with N-body Simulations
	2024 IDIES Annual Symposium
April 2024	FIREFLy-SOSS: Exoplanet Transit Light Curves Extraction Pipeline for
	JWST NIRISS-SOSS Observations
	Departmental Undergraduate Research Showcase, Johns Hopkins University, MD
April 2024	Is The Formation Of Planets The Cause of Solar Atypical Abundance
	Pattern?

	Johns Hopkins University DREAMS Symposium
April 2024	Characterization of Cloud-free Hot-Saturn WASP-96b with Joint JWST,
	Hubble, VLT, and Spitzer Transmission Spectroscopy
	Johns Hopkins University DREAMS Symposium
Jan. 2024	Elemental Abundance Trends with Condensation Temperature are
	Unrelated to Planet Formation
	243rd Meeting of the American Astronomical Society, New Orleans, LA
June 2023	Elemental Abundance Trends with Condensation Temperature are
	Unrelated to Planet Formation
	Origins of Solar Systems Gordon Research Conference, Mount Holyoke College, MA
June 2023	Stellar Elemental Abundance Patterns: Implications for Planet Formation
	No-PhD Journal Club, Johns Hopkins University, MD
Aug. 2022	Optimizing JWST BOTS Transit Light Curve Fitting
	The Center for Astrophysics Research Experience, Johns Hopkins University, MD

TELESCOPE ALLOCATIONS

2024 Q4	Apache Point Observatory, ARCSAT, 14 nights
	Complementary Flare Monitoring of the Enigmatic Triple Red Dwarf LTT 1445ABC
	PIs: Rustamkulov, Z., Bennett, K., CoIs incl. Wang, L. C.
2024 Q3	Apache Point Observatory, ARCTIC, 3 nights
	Synergistic Cool Star Monitoring: Characterization of Starspots
	PIs: Rustamkulov, Z., Allen, N., Wang, L. C., Wang, G.

TEACHING APPOINTMENTS

2024 Spring	Teaching Assistant, AS.171.108 General Physics II (Undergraduate, 23 students)
2023 Fall	Teaching Assistant, AS.171.107 General Physics I (Undergraduate, 46 students)
2023 Spring	Teaching Assistant, AS.171.101 General Physics I (Undergraduate, 46 students)
2022 Fall	Teaching Assistant, AS.171.101 General Physics I (Undergraduate, 23 students)

SKILLS

Programming	Python, C/C++, Java, Assembly, Fortran, Matlab, R, HTML, CSS, JavaScript, Bash, rust, go, React, flask, Node.js
Data science	sql, MySQL, PostgreSQL, Pytorch, TensorFlow, OpenCV, docker
ASTRONOMY SOFTWARES	DS9, Siril, MESA (stellar structure), Rebound (N-body), Mercury (N-body),
	petitRADTRANS (atmospheric retrieval)
Observation	The Morris W. Offit Telescope (half-meter telescope at JHU), ARC 3.5m telescope at
Experience	Apache Point Observatory
Languages	English, Chinese, French
Other	I⁴TEX, Git, Slurm, Mathematica, JupyterLab, Adobe Lightroom, Adobe Photoshop,
	Blender, Soccer, A Cappella, Marathon